Hypertensive Crisis

Timothy E. Bunchman
Professor and Director
Pediatric Nephrology & Transplantation
Children’s Hospital of Richmond
Virginia Commonwealth Univ. School of Medicine

Timothy.bunchman@vcuhealth.org
pedscrrt@gmail.com

www.pcrrt.com
Hypertension

- Whether end organ symptoms or damage is present or not - is more important than the absolute degree of BP elevation

- The renin angiotensin system plays an important role in the genesis of hypertension crisis

- Important to assess whether the HT is chronic, acute, or acute on chronic
Definitions

- **SEVERE HYPERTENSION**: defined as 20 mm hg above the 95th centile

- **HYPERTENSIVE CRISIS**: defined as a sudden and abrupt elevation in blood pressure from baseline—generally 50% above normal— or >180/120

- **HYPERTENSIVE EMERGENCY**—a severe symptomatic elevation in BP with evidence of potentially life threatening symptoms or acute target organ damage

- **HYPERTENSIVE URGENCY** is severe hypertension with no target organ damage
Complications of Hypertension: Target-Organ Damage

- TIA, stroke
- Retinopathy
- Peripheral vascular disease
- LVH, CHD, HF
- Renal failure

TIA, transient ischemic attack; LVH, left ventricular hypertrophy; CHD, coronary heart disease; HF, heart failure
Clinical evidence of End organ damage

- **CNS**: altered mental status - lethargy, coma, confusion, seizures, irritability, Facial N palsy, hemiplegia

 (Exclude Head trauma or mass lesion)

- **Eye**: Papilloedema, retinal hemorrhages

- **Heart**: LVF, Pulmonary edema, S 3 gallop, new heart murmurs, LV hypertrophy

- **Renal**: Hematuria, proteinuria (Acute GN)
Hypertensive Encephalopathy

Most Emergencies manifest as ENCEPHALOPATHY which is defined by

- Severe BP elevation with cerebral edema
- Neurological symptoms of lethargy, coma and seizures

Caused by cerebro vascular endothelial break down secondary to failure of cerebral autoregulation
Presentation to review

- Etiology
- Evaluation
- Treatment options
Renovascular disease
- UA cath and TE
- Congenital renal anomalies
- Coarctation of Aorta
- Broncho pulmonary dysplasia
- CAH
- Renal vein thrombosis
- Renal parenchymal disease
- Iatrogenic Fluid overload
- ARPKD
- Tumours
- Hypercalemia

Most often secondary to an underlying disease
- Renal parenchymal disease: 60-70%
 - Ac GN, Reflux N
- Renovascular disease: 5-25%
 - Renal A stenosis
- Coarctation of aorta - important cause in infancy
- Essential hypertension - emerging health concern in adolescents - but rarely causes HT crisis
ECF expansion
- Salt intake
 - Increased cardiac output and peripheral resistance
 - High AT-II levels
 - Sympathetic over activity
 - Hyper PTH
 - Uremic toxins
 - Erythropoietin
 - Non-compliance with antihypertensives
 - Endothelial dependent Vd

Acute CNI toxicity
- TMA
- Effect of sirolimus
- High dose steroids
- Fluid overload
- Severe rejection and MA

Renovascular hypertension
RENAL ARTERY STENOSIS
- FMD, NF 1, TS
- Takayasu’s arteritis
- Middle aorta syndrome
- William syndrome

HTN post transplant pts

HT in CKD patients and Chronic Dialysis
Examination

- **Anthropometry**
 - weight
 - height
 - BMI
- All peripheral pulses to be palpated
- Four limb BP
- Good general and systemic examination
- Neurocutaneous markers
- Peripheral edema

- **Waist/Hip Ratio**
 - Waist circumference - Abdominal obesity

- **Birth weight**
- **Post natal growth pattern**
- **High salt intake**
EVALUATION

Phase 1
- CBC
- Urinalysis
- Urine Culture
- Na/K/creat/BUN/
- Ca/Uric acid
- Lipid profile
- Chest Xray
- Renal USG,
- Doppler
- ECHO,ECG

Phase 2
- Renal scan with ACE inhibitor
- Renin profile
- MCU, DMSA
- Urine catecholamines
- Plasma and urine steroids
Phase 3
Renal artery imaging
Renal vein renin sampling

CO MORBIDITY
Fasting lipid profile
Fasting Glucose
Drug screen
Polysomnography
Specific Gravity
Proteinuria
 - Prot/Cr
 - UPEP
+ Hematuria + RBC
+ Hematuria − RBC
 - CPK
 - LDH
If

- Hypochloremic Metabolic Alkalosis
 - Adrenal induced Htn
 - RAS
- Renal insufficiency, low plasma proteins/albumin due to renal loss
 - bx
- Low complement
 - PIGN, SLE, MPGN may need to be bx
Renal imaging

- If there is a discrepancy in renal size
 - Angiogram with renal vein renins
 - Avoid use of diuretics, ACE, ARB or Beta blockers 1-2 weeks prior to this setting
 - DMSA scan for scar
 - Thin cut CT
Renal Vein Renins

<table>
<thead>
<tr>
<th>IVC Level</th>
<th>Right Renal Vein</th>
<th>Left Renal Vein</th>
</tr>
</thead>
<tbody>
<tr>
<td>High IVC</td>
<td>12 ng/ml/hr</td>
<td></td>
</tr>
<tr>
<td>Rt Renal Vein</td>
<td>20 ng/ml/hr</td>
<td>Left Renal Vein</td>
</tr>
<tr>
<td>Low IVC</td>
<td></td>
<td>3 ng/ml/hr</td>
</tr>
</tbody>
</table>
Why not draw?

- **Renins**
 - Random renins have not been found to be diagnostic...
 - effected by volume status, ACE inhibitors, ARBs, Beta blockers

- **Aldosterone**
 - May be helpful if evidence of a hypochloremic metabolic alkalosis
Case 1

- 6 years old male child with SRNS was diagnosed to have hypertension outside, started on Enalapril
 - Had one episode of change in is mental status
 - Intubated due to worsening of sensorium
 - He developed irrelevant speech and unable to bear weight after extubation
 - Referred here for further management.
- In casualty he had one episode of seizure for which he was started on antiepileptic
- EEG done was suggestive of bilateral epileptiform discharges
- MRI Brain with MRA was done
Bilateral asymmetric gyral swelling and hyperintensity and symmetric posterior thalamic hyperintensities
After a month - resolution of findings
DIAGNOSIS ???

PRES

POSTERIOR REVERSIBLE ENCEPHALOPATHY SYNDROME
Hypertensive encephalopathy occurs due to:
- Cerebral hyper perfusion
- Endothelial dysfunction
- Microvascular injury
- Cerebral edema

These manifests as PRES in imaging studies.
PRES

- Occurs due to vasogenic edema, onset of hypertension is acute

- Often a trigger in other conditions like
 - Treatment with immunosuppressive drugs
 - Vasculitis
 - Renal insufficiency

- Endothelial dysfunction and NO depletion are proposed mechanisms

- Symptoms
 - Altered mental status, Headache, Seizures
Treatment Options for acute HTN

- Angiotensin Receptor Blockade (ARB) - avoid
- Central Action
- Diuretics - avoid
- Vasodilators/alpha blockers
- Beta Blockers - avoid if hyperkalemia
- Calcium Channel blockers
- ACE inhibitors - avoid
Angiotensin Receptor Blockade (ARB)

- Newer generation of class of drugs
- Not a role in the Rx of malignant Hypertension
- Used best in patients with CKD (chronic kidney disease)
- Avoid if CKD/AKI/hyperkalemia
Central Action

- Not a role as a primary agent
- PO/Transdermal Clonidine good option for sedation withdrawal hypertension
- Problem with patch is at the time of hypotension a patch can be forgotten
- If on po Clonidine (data on patch less clear) and drug abruptly stopped, one is at risk for rebound significant hypertension
Diuretics

- Use as an adjunct to other agents only
- Not a role as a primary antihypertensive
- Side effects of electrolyte disturbances, elevated uric acid, lipids
Beta Blockers

- Pure Beta blockers have limited role in hypertensive crisis
- Avoid if hyperkalemia, bradycardia
Beta Blockers

- **Esmolol**-good for tachycardia
 - Ld 100-500 mic/kg then 50-500 mic/kg/min
 - Wiest et al, J Thor Cardiov Sg 1998 4:890

- **Labetalol (Alpha/Beta)**
 - Ld 0.2-1 mg/kg then 0.5 – 2 mg/kg/hr
 - J Peds 1992 120:140

- **Metoprolol infusions**
 - 1-5 mics/kg/min to titrate to effect
 - Peds Nephrol 2017 32:2107-2113
ACE inhibitors

- Should be limited as a primary agent due to the risk of
 - Influencing renin data if measured
 - Risk of AKI, hyperkalemia
 - Avoid in severe coarctation of the aorta or in bilateral renal artery stenosis due to risk of AKI
ACE inhibitors

- The only IV option is enalaprilat
 - 5-10 mic/kg/dose q 4-8 hrs
 - Wells et al, Pediatr 1988 113:403
- Preferred drug in micro embolic states with associated Htn
 - UAC induced
 - Renal vein thrombosis
Vasodilators/alpha blockers

- Nitroprusside
 - Direct arterial vasodilator
 - Use with caution in AKI
 - Cyanide toxicity
 - Replaced by newer generation

- Nitroglycerin
 - Arterial and veno dilator
 - Intravenous or Transdermal (0.5-2 inches)
Vasodilators/alpha blockers

- Fenoldopam
 - Dilator with improvement in renal blood flow
 - 0.1 mic/kg/min to max 5 mic/kg/min
 - Stauser et al, AM J Ther 1999, 6:283
- Use in patients **without** Htn to enhance Renal Blood Flow and UO has not been well studied but may decrease BP to much to offset benefit of RBF preference
Vasodilators/alpha blockers

- Phentolamine
 - Used exclusively in Rx of Pheochromocytoma
 - 0.1-0.2 mg/kg bolus and q 2-4 hrs
 - Use preop to effect systemic symptoms of flushing, significant BP swings

- Bholah R et al, Review of Pediatric Pheochromocytoma and Paraganglioma.
Calcium Channel Blockers

- Primary drug used for Malignant Htn
- Safe as an intravenous agent
- Class of drug of choice in patients on calcinurin inhibitors (tacro, csa, rapamycin)
- Nifedipine SL
- Nicardipine IV
SL Nifedipine

- Immediately effective but watch for rapid and worsening rebound
- No longer used in adult due to sudden death
- Leonard et al Ped Emg Med 2001 17:435
 - 2 children given SL due to Malignant Htn in the ED..both improved but within 30 mins both rebound and had strokes!
Nicardipine

- Immediate on set of action
- Easy to titrate at bedside
 - 0.5-5 mic/kg/min as a continuous gtt
 - J Pediatr 2001 139:38
- Perhaps a role as an intermittent bolus
 - 10-20 mic/kg/dose IV/5 mins every 1-3 hrs
Algorithm for Treatment of Hypertensive Crisis

Intravenous Drugs

- **Nicardipine**
- **Labetalol**
 - Avoid in hyperkalemia and acute heart failure
- **Sodium Nitroprusside**
 - Monitor thiocyanate toxicity
- **Fenoldopam**
- **Hydralazine**
- **Enalaprilat**
 - Avoid in neonates and renal failure
- **Clevidipine**

Hypertensive crisis

- **Hypertensive Emergency**
 - **Nicardipine**
 - **Labetalol**
 - **Sodium Nitroprusside**
 - Monitor thiocyanate toxicity
 - **Fenoldopam**
 - **Hydralazine**
 - **Enalaprilat**
 - Avoid in neonates and renal failure
 - **Clevidipine**

- **Hypertensive Urgency**
 - **Isradipine / Nifedipine**
 - **Clonidine**
 - **Minoxidil**
 - **Furosemide**

Oral Drugs

- **Isradipine / Nifedipine**
 - **Clonidine**
 - **Minoxidil**
 - **Furosemide**

Hypertensive Crisis in children

Ped Nephrology

Jayanthi Chander 2012
Treatment Strategy

- Like antibiotics decision making learn one from each class and stay with it
- If the goal is to get the patient improved but to get them to the ward
 - Begin oral, Transdermal therapy soon after beginning IV therapy if the patient can tolerate it
Drugs that are easy to use

- Consider CCB or vasodilators as the first line drugs for Htn for these have low risk profiles, less influence on interpretation of other data
Thank you

- Timothy.bunchman@vcuhealth.org
- pedscrrt@gmail.com
- www.pcrrt.com
 - Contains all talks given at the PCRRRT meetings from 2000 to the most recent in 2017 in Orlando
Signs and symptoms of hypertensive crisis includes

- seizures
- Heart failure
- Pulmonary edema
- All of the above
With a child has a bilateral renal artery stenosis with renal insufficiency then the intravenous drug to avoid is

1. IV Nicardipine
2. IV enalaprilat
3. IV atentolol
4. IV nitroglycerine
If a child has a seizure from a hypertensive crisis then the priority (of the first thing to do) is to

- Check a head CT scan
- Treat with seizure medications
- Bring the blood pressure down
- All of the above